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Figure 1 Top: Simple input animation depicting hopscotch (a popular child game consisting of hops, broad jumps and a spin jump). Bottom: Synthesized realistic
hopscotch animation.

Abstract

In this paper we present a general method for rapid prototyping of
realistic character motion. We solve for the natural motion from a
simple animation provided by the animator. Our framework can be
used to produce relatively complex realistic motion with little user
effort.

We describe a novel constraint detection method that automatically
determines different constraints on the character by analyzing the
input motion. We show that realistic motion can be achieved by
enforcing a small set of linear and angular momentum constraints.
This simplified approach helps us avoid the complexities of com-
puting muscle forces. Simpler dynamic constraints also allow us to
generate animations of models with greater complexity, performing
more intricate motions. Finally, we show that by learning a small
set of key parameters that describe a character pose we can help a
non-skilled animator rapidly create realistic character motion.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation;

Keywords: Animation, Animation w/Constraints, Physically Based Animation, Phys-

ically Based Modeling, Motion Transformation, Spacetime Constraints

1 Introduction

Generating realistic character animation remains one of the great
challenges in computer graphics. To appear realistic, a character
motion needs to satisfy the laws of physics, and stay within the
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space of naturally occurring movements. Simulated human mod-
els can move their muscles in many different ways to accomplish
the same task, but only a small subset of these motions appears re-
alistic. Creating such natural models of motion has proven to be
an extremely difficult task, especially for characters as complex as
humans.

Complex models of character dynamics are also difficult to control.
Computing the correct dynamics requires an extensive mathemati-
cal infrastructure that often hinders artistic expressiveness. On the
other hand, granting more control to animators provides greater ex-
pressive freedom often at the cost of realism because the burden of
being physically correct falls into the animators’ hands.

An ideal realistic character animation system should be able to syn-
thesize natural motion of arbitrary characters, and, at the same time,
provide the expressive power of keyframing. Furthermore, the sys-
tem should allow non-skilled users to create realistic animations
easily with minimal training. This paper strives to make a step in
that direction. We present a novel approach for rapid prototyping
of realistic character motion. We focus on the synthesis of highly
dynamic movement such as jumping, kicking, running, and gym-
nastics. Less energetic motions such as walking or reaching are not
addressed in this paper. Our system could be used by both experts
and non-skilled animators alike.

The animator first creates a rough sketch of the desired animation.
From this initial simple animation the system infers environmental
constraints on the character motion (e.g. footsteps). We choose not
to use the full character formulation of dynamics. In fact, we avoid
solving for muscle forces altogether. Instead, we focus on deter-
mining more fundamental properties of realistic, highly dynamic
motion and try to preserve these features throughout the process of
animation. In particular, our system extracts the general patterns
of linear and angular momentum transfer during dynamic motion
and tries to preserve these patterns during animation. We ask the
animator to fully specify a small set of specific keyframes. Since
our target users are animators of all skilled levels, our system can
also make suggestions for each of those keyframes. Finally, the an-
imator can fine-tune the motion by specifying additional keyframes
anywhere in the motion sequence.

The rest of the paper describes our approach in more detail. In Sec-
tion 2, we discuss related work. Section 3 gives a short overview
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of our motion synthesis approach. Subsequent sections describe
various aspects of our algorithms in more detail. In Section 9, we
describe a collection of example animations generated by our sys-
tem. Section 10 summarizes our contributions and outlines possible
future research directions.

2 Related work

Synthesis of natural motion has its roots in a variety of research
areas ranging from robotics and spacetime optimization to biome-
chanics and kinesiology.

Robot controller simulation has been successfully applied to the do-
main of realistic computer animation [Raibert and Hodgins 1991;
van de Panne et al. 1994; van de Panne and Fiume 1993; Hod-
gins 1998]. Controllers drive actuator forces based on the current
state of the environment. Actuator forces, through simulation, pro-
duce realistic motion. Once the controllers have been fine-tuned
and synchronized to each other, a wide range of realistic anima-
tions can be produced, ranging from human running, diving [Hod-
gins et al. 1995], leaping and vaulting [Wooten 1998], to motion of
non-human characters [van de Panne et al. 1994; Laszlo et al. 2000;
Torkos and van de Panne 1998]. Although there have been some
recent promising advances towards automatic controller synthesis
[Hodgins and Pollard August 1997; Faloutsos et al. 2001], creating
controllers for a given task remains a difficult process. In addition,
simulated robot controllers do not expose sufficient control to allow
for expressive animations.

A number of researchers take the approach of modeling physical
behavior on simpler machines, instead of full complex characters
[Torkos and van de Panne 1998; Popović and Witkin 1999; van de
Panne 1997; Pollard 1999; Discreet n. d.; Bruderlin and Calvert
1989]. In these methods, the physically modeled motion of simple
machines is mapped onto the full character. Our simplified physics
constraints are in part inspired by the idea that simpler physical
models can approximate the behavior of more complex models. In
contrast to the approach described by Popović [1999], we do not
simplify the character, nor do we compute full dynamics of the
simplified character. Instead, we compute significantly simpler mo-
mentum constraints directly on the complex character. Simpler and
more general dynamics constraints allow us to synthesize realistic
motion starting from highly unrealistic motion.

The spacetime constraints framework, in contrast to simulation,
casts the motion synthesis into a variational optimization problem
[Witkin and Kass 1988; Cohen 1992; Liu et al. 1994; Rose et al.
1996]. The animator specifies an objective function that is a metric
of performance or style (e.g. total power consumption of all of the
character’s muscles). The algorithm minimizes the objective func-
tion while satisfying the pose and Newtonian physics constraints
across all animation frames. Optimal energy movement and in-
tuitive control give this method great appeal. Unfortunately, for
complex characters the Newtonian physics constraints are highly
nonlinear, preventing the spacetime optimization from converging
to a solution. Spacetime constraints are also highly sensitive to
the starting position of the optimization — if the initial state is far
away from the solution, the optimization often does not converge.
To date, these drawbacks prevent spacetime constraints from being
used in generating complex character motion. Our framework uses
spacetime constraint optimization, but we circumvent its drawbacks
by choosing a simpler set of dynamics constraints.

Realistic motion can also be obtained directly from the real world.
Recently, a number of methods for editing motion capture data have
been proposed [Witkin and Popović 1995; Bruderlin and Williams
1995; Gleicher 1998; Gleicher 1997; Gleicher and Litwinowicz
1998; Rose et al. 1998; Gleicher 2001; Lee and Shin 1999; Shin
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Figure 2 Algorithm overview.

et al. 2001], including a few that try to preserve physical proper-
ties of the motion [Popović and Witkin 1999; Pollard and Reitsma
2001; Pollard and Behmaram-Mosavat 2000; Zordan and Hodgins
1999]. In general, these methods produce motion that does not de-
viate significantly from the input motion. Motion editing tools rely
on the existence of captured motion that is similar to what the ani-
mator intends to create. Also, it is inherently difficult to introduce
new expressive content into the animations, since most editing tools
are designed to preserve the original motion features.

Research in biomechanics and kinesiology provides a great source
of information on the kinematic and dynamic behaviors of ani-
mals [Blickhan 1999; Hull 1991; Yeadon 1990; Alexander 1990;
Alexander 1989; Pandy et al. 1990]. Their analysis of ground and
flight stages helped us in designing realistic motion constraints.
Blickhan and Full [1993] demonstrate the similarity in the multi-
legged locomotion of kinematically different animals. They show
striking similarities between a human run, a horse run and the
monopod bounce (i.e. pogo-stick). This similarity motivates our
approach of finding the least common denominator for a varied set
of dynamic motions.

Our motion sketching approach to synthesizing motion was in-
spired by the effectiveness of Igarashi’s sketching interface for 3d
free-form design [1999], and the work on sketching realistic rigid-
body motion [Popović et al. 2000].

3 Overview

Our system transforms simple animations into realistic character
motion by applying laws of physics and the biomechanics domain
knowledge. The input to our system consists of an articulated char-
acter with its mass distribution, and an arbitrary character animation
containing values of joint angles on the character at each frame. An-
imators are free to provide input animations with an arbitrary level
of detail. In all of our examples we started with rough low-quality
animations. Figure 1 shows a synthesized realistic hopscotch mo-
tion and its original simple animation.

We frame the motion synthesis problem as a spacetime optimiza-
tion. The unknowns to this problem include the values of joint an-
gles at each frame, along with parameters that determine the behav-
ior of angular and linear momentum. The entire synthesis process
breaks down to four key stages (see figure 2):

Constraint and stage detection. Automatically detect environ-
ment constraints that correspond to user-intended motions,
and separate the original motion sequence into constrained
and unconstrained stages.

Transition pose generation. Establish transition poses between
constrained and unconstrained animation stages.

Momentum control. Generate physical constraints according to
the Newtonian laws and the biomechanics knowledge.
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Figure 3 Positional constraint types: (a) A single positional constraint on a
toe, (b) a line positional constraint on the front of the foot, and (c) a plane
positional constraint. The green arrows indicate the free motion range.

Figure 4 Left: A fixed-point positional constraint occurs at the intersection
of three lines representing the solutions for the linear systems of three consec-
utive animation frames. Right: A fixed-line positional constraint occurs at the
intersection of three planes.

Objective function generation. Construct the objective function
that favors motion that is smooth, similar to the input motion,
and balanced when stationary.

Each stage improves specific aspects of the input motion sequences
by introducing constraints or objective function components to
the spacetime optimization problem. We then use a sequential
quadratic programming method to find the optimal animation. In
the subsequent sections we describe each of these steps in detail.

4 Constraints and stage detection

From the standpoint of a user, each input motion sequence simply
comprises two parts: the part that needs to be improved and the part
that needs to be kept intact. For example, a user might wish that the
hands of the character stay stationary on a high bar while our sys-
tem makes the rest of the motion look realistic (figure 8). Moreover,
users usually require a number of environmental restrictions on the
movement of the character. For example, the feet should always
remain above the ground. Violating these restrictions modifies the
semantics of the animation that the user conveyed in the input an-
imation. We represent these environmental restrictions with posi-
tional and sliding constraints. Since the rough sketch animation
does not explicitly contain these requirements from users, our sys-
tem automatically extracts the constraints from the input motion. In
this section, we present an algorithm that automatically detects po-
sitional and sliding constraints from the original motion sequence.

4.1 Positional constraints detection

A positional constraint fixes a specific point on the character to a
stationary location for a period of time. For example, when a char-
acter’s heel touches the ground at landing, a positional constraint
occurs on the heel across a number of frames. Violating positional
constraints frequently causes undesirable artifacts such as feet slid-
ing or penetrating the ground.

To detect positional constraints, we need to find all points on the
body that stay fixed in space for some period of time. We would
also like to determine if these points are isolated in space or if they

lie on a line or a plane in order to detect constraints at a finer gran-
ularity (figure 3). For example, when the character takes off in a
jumping motion, a plane of positional constraints on the bottom of
the foot is detected first, followed by a single point constraint when
the character transfers from standing on the entire foot to being on
its toes.

Because each body part of the character is a rigid body, we reduce
the problem of finding the constrained points on the whole character
to finding constrained points on each body part. To illustrate our
approach, we describe the movement of a body point through time.
Let Wi be the matrix that transforms a point in a local coordinate
frame p to its world position xi at time i, or

xi = Wip. (1)

At time i + 1, p will be transformed to Wi+1W−1
i Wip. We then

define

Ti+1 = Wi+1W−1
i , (2)

as the transformation that brings xi to xi+1. A positional constraint
on p from time 1 to time n implies that T1 through Tn all bring p to
the same global position or

Tixi = xi or (Ti − I)xi = 0, (3)

for i = 1 . . .n. The solution for each time i is the eigenvector for
Ti corresponding to the unit eigenvalue. Because Ti is an affine
matrix, it can be written as

Ti =

[
T̂i bi
0 1

]
(4)

so that we can reformulate equation (3) as a linear system

(T̂i − I)x̂i = −bi. (5)

The linear system in equation (5) is not always consistent, so we
solve it in a least-squares sense. Depending on the rank of (T̂i − I),
the solution for each time i can be represented as a point, a line or
a plane.

If the intersection of the geometries representing x̂1 through x̂n, X,
exists and falls on the body, then we define a constraint that fixes
p to X. In other words, we establish position constraints where
there exists a collection of points that remains stationary over a time
period 1 . . .n (figure 4).

Our algorithm can be fine-tuned by modifying following parame-
ters:

Minimal frames required (n) The intersection has to exist across
at least n frames to be considered a positional constraint.

Tolerance of intersections (e) Two solutions are considered inter-
secting if the distance between them is less than e .

Constrainable body parts Constraint detection is performed only
on a subset of body parts where users are interested in finding
positional constraints. This is useful when we want to detect
constraints only on specific body parts in the case when the
entire character stands still.
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4.2 Sliding constraints

Sliding constraints are a generalization of positional constraints. In-
stead of fixing a point on the character to a single world coordinate,
a sliding constraint limits the point’s motion to a particular line or
plane in world space. For example, a figure skater is free to change
the location of the foot on the ice as long as it slides along the same
line. Thus, we need to solve for both the constrained body points
and the line or plane to which they are constrained.

We describe the algorithm for finding a line constraint. The plane
constraint is computed analogously. We want to find a body point p
that is constrained to a line l. Instead of establishing a closed-form
solution, we construct a least-squares problem, where unknowns
are the parameters for p and l

minp,l å
i

Dist(TiWip, l) (6)

In other words, we minimize the sum of distances between the xi
and line l at each frame i.

Because the definition of a plane sliding constraint subsumes line
sliding constraints, and a line sliding constraint subsumes a point
constraint, we perform our constraint detection in the order of de-
creasing restriction. First we solve for position constraints and then
line sliding constraints and finally plane sliding constraints.

Although we tried to design our constraint detection to be as gen-
eral as possible, in practice the rough sketch motion is rarely de-
tailed enough to be able to find the exact location of the constraint.
For example, the animator often leaves the entire character static
during the time when character is on the ground. In that case, our
constraint detection would find constraints on each body part. In
those situations, we allow the animator to select specific body parts
that should be tested for constraints. For example, we only select
the feet of the character to be detected in the hopscotch example.
This approach would also not fare well on extremely noisy data
such as poor-quality motion capture.

4.3 Stage detection

Given the list of detected constraints, the system separates the orig-
inal animation into unconstrained (flight) and constrained (ground)
stages. We draw the distinction between unconstrained and con-
strained stages because the physics and biomechanics rules in the
air are different from those on the ground. During the unconstrained
stage, gravity is the only external force acting upon the character.

5 Transition poses

A transition pose separates constrained and unconstrained stages.
We ask animators to specify these specific poses because all other
non-transition frames are more directly controlled by the realism
constraints. Transition poses also tend to be interesting from the an-
imator’s perspective. The following two sections describe a learned
estimator that suggests a pose at each transition frame. We also de-
scribe a set of tools that allow users to position the character at the
phase transitions.

5.1 Suggesting learned poses

Our pose estimator predicts poses at transition frames based on
the input motion sequence. The estimator is a K-nearest neighbor
(KNN) algorithm. The training consists of storing a specific set of
parameters about the transition poses for each example motion. The
examples can be generated by the animators or captured from real
world. We also incrementally update the database by inserting mo-
tions as they are specified by the user during the animation process.
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Figure 5 Left: The input parameters of a training example in the motion
database include flight distance (D), flight height (H), previous flight distance
(D′), takeoff angle (q ), landing angle (f ), spin angle (w), feet speed at takeoff
(dr , dl ) and landing (hr , hl ), and horizontal average speed (v). Right: The
KNN algorithm selects the k most similar examples based on the input pa-
rameters and outputs a simplified representation of a character. The simplified
representation consists of centers of mass for the lower body (Cl ), upper body
(Cu), and arms (Ca), all relative to the center of support (ps).

The training input parameters include flight distance, flight height,
previous flight distance, takeoff angle, landing angle, spin angle,
foot speed at takeoff and landing, and average horizontal speed
(figure 5). To compute an appropriate distance between training
examples, we scale each input parameter by its natural bounds. The
estimator predicts a simplified representation of the transition poses
at the constraint release (takeoff) and constraint creation (landing).
For each pose, the characteristics of the target motion must match
the prediction. The output representation consists of three mass
points: center of mass (COM) of the lower body, COM of the upper
body, and COM of two arms (figure 5). The locations of mass points
are stored relative to character’s center of support. This makes our
parameterization invariant of the global transformation.

To predict a candidate pose from the input, the KNN algorithm se-
lects the k most similar examples from the motion database (k = 3,
in our implementation). The estimator computes the candidate
pose, which consists of the positions of the three mass points, by
interpolating the poses of the selected neighbors, weighted by their
similarities to the input.

We reconstruct a full character pose from three mass points by solv-
ing an inverse kinematics (IK) problem, constraining the three mass
points to values returned by KNN, while minimizing the deviation
between the suggested and original poses. We set the initial states
of the unknown DOFs equivalent to the DOFs of the poses from the
nearest training-set example, so that the solution pose keeps some
plausible details from the database examples.

There are a number of advantages to estimating a small set of pose
parameters. Joint angles themselves are poor estimators of the pose
since they are not uniformly scaled. Furthermore, with our repre-
sentation we can use the same motion database to learn the poses
of characters with drastically different skeletal structures. We use a
simple formula to scale the estimated relative mass points positions
to accommodate a different skeleton. Let CA be one of character
A’s COM output parameters from the learning algorithm and CA
be the corresponding COM for the default pose. Suppose we know
CB, the corresponding default pose of another skeletal structure, we
can compute CB as follows:

CB = CB +(CA −CA)
‖CB‖2

‖CA‖2

(7)

Intuitively, we displace the center of mass parameter by the rescaled
difference between the default and suggested pose of the charac-
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Figure 6 The general angular momentum pattern modeled after biomechanics
data. During the unconstrained stage (left of p1 and right of p4), the angular
momentum is constant. During the constrained stage (between p1 and p4), the
curve is smooth, p2 is lower than p1, d2 is less than d1, and p2 and p3 are on
opposite sides of p4.

ter in the database. We also found that this parameterization al-
lows us to learn poses from a relatively small set of examples. We
used a database of about 50 motion captured constrained and un-
constrained segments to synthesize all of animations described in
Section 9.

5.2 User pose adjustment

Because the estimated poses do not always meet the needs of the
animation, we allow animators to directly modify transition poses.
Our posing tool gives the user both fine-grain and high-level control
of the pose edit process. Users can directly modify the learned mass
points by dragging them to a new location. The IK solver adjusts
the joint DOFs accordingly. For greater control, the animator can
modify the transition pose directly. The user can also customize
the importance of the similarity between the current pose and its
corresponding pose in the original sketch. By fine-tuning transi-
tion poses animators can impart expression and style to the overall
motion.

Animators are also free to introduce new keyframes anywhere in
the animation to refine more detailed aspects of motion. How-
ever, when an animator creates too many of these constraints, the
spacetime optimization problem becomes over-constrained. At that
point, the animator has the option of turning momentum constraints
into soft constraints. The optimization honors all of the animator’s
constraints while trying to satisfy soft realism constraints as much
as possible. This approach provides graceful degradation of realism
in the event that the animator’s keyframe poses force the character
into unrealistic movement.

6 Controlling the character momentum

The transition poses constrain the motion at a few key points of
the animation. In a sense, they provide scaffolding for the motion,
whereas dynamic constraints ensure realistic motion during each
animation segment. We achieve this realism by formulating con-
straints on the behavior of the character’s linear and angular mo-
mentum. We derive these constraints from the laws of physics and
biomechanics domain knowledge.

Linear momentum determines the location of COM at each frame.
The computation of angular momentum involves different body
parts and their moments of inertia relative to the center of mass (for
computation of angular momentum on an articulated character see
Appendix A). The constraints on linear and angular momentum are

different for unconstrained and constrained stages, and we discuss
them separately.

6.1 Momentum during unconstrained stages

Since gravity is the only external force acting on the unconstrained
character, the following equation holds

dP(q)/dt = mC̈(q) = mg, (8)

where C is character’s center of mass, and q are character’s degrees
of freedom.

During flight there are no external torques acting on the character,
so the angular momentum is constant

dL(q)/dt = 0. (9)

The spacetime optimization enforces these two constraints during
an unconstrained stage. Effectively, these constraints ensure that
the center of mass falls into a parabolic trajectory and the joints
move in such way that the angular momentum of the whole body
remains constant (figure 6).

6.2 Momentum during constrained stages

Unlike the unconstrained stage where gravity is the only external
force acting on the character, the momentum at a constrained stage
results from a complex exchange of energy between the character
and the environment constraints. We would like to avoid computing
linear and angular momentum by complex physical simulation. In-
stead, we build an empirical model for the behavior of momentum
based on biomechanics studies [Pandy et al. 1992; King 1999] and
the analysis of motion capture data. We observe that the momen-
tum during a constrained stage has a characteristic shape shown
in figure 6. The figure shows a graph of an angular momentum
component during a constrained stage between two unconstrained
stages. Note that the angular momentum is constant during the two
unconstrained stages.

During the constrained stage, the momentum transfers from one
constant value to another. Natural dynamic systems achieve this
transfer by first storing energy (momentum decreases), and then
releasing it in a burst which causes a small overshoot at p3.

The characteristic pattern of the linear momentum is the same with
the exception that the linear momentum in the neighboring uncon-
strained stages has a slope mg instead of 0.

We try to capture all aspects of this curve by enforcing the following
invariants:

• the curve is C1–continuous at transition points p1 and p4

• p2 is less than p1

• d1 is larger than d2

• p2 and p3 are on the opposite sides of p4

Since the momentum pattern during the constrained stage is fully
determined by the control point vector qm = [p1, p2, p3, p4], we for-
mulate the linear and angular momentum constraints as

P(q) = Sl(qm) (10)

L(q) = Sa(qm) (11)

During optimization we solve for both q j
m vectors for each con-

strained stage j and qi for each time frame i enforcing the con-
straints in equations 8,9,10,11, as well as the inequality constraints
on q j

m governing the shape of the momentum curves.
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7 Objective function

The momentum constraints enforce realism of the motion while de-
tected constraints take into account the user intent and environmen-
tal restrictions. However, natural looking motion also requires nat-
ural joint movements, smoothness across frames, and static balance
during stationary points of the animation. We formulate each as an
objective function component.

Minimum mass displacement. To achieve natural joint move-
ment, we use the minimum mass displacement metric [Popović
and Witkin 1999]. Instead of comparing DOFs directly, this met-
ric computes the integral of mass displacement over the character’s
body. This metric is loosely analogous to the measurement of power
consumption. Our results show that minimum mass displacement
presents its own merits in producing natural looking animations.
For example, the compression on the body of the character before
the unconstrained stages would not affect the lower body (knees,
especially) without the minimum mass displacement as an objec-
tive function. Without it, the character tends to bend at the waist in
order to lower the COM.

Minimal velocity of DOFs. Time coherence plays a major
role in creating visually plausible animations. To account for the
smoothness across frames, we define an objective function that min-
imizes the deviation of each DOF between two consecutive frames,
effectively minimizing the velocity of each joint angle over the en-
tire animation.

Static balance. The static balance is important during con-
strained stages when the character is standing still [Tak et al. 2000].
We measure balance by the distance between the COM and con-
straints when projected onto the plane normal to gravity.

The spacetime objective function is a weighted sum of the three
objective components.

8 Putting it all together

All constraints and the objective function fit naturally within the
spacetime framework. The unknowns of our system Q are the char-
acter DOFs qi for each time i and the control point vectors for all
constrained-stage momentum curves q j

m. The optimization needs
to enforce three types of constraints:

Environment constraints(Ce). Constraint detection produces a
collection of user-intended constraints that partition the mo-
tion into constrained and unconstrained stages.

Transition pose constraints(Cp). These constraints were defined
between each motion phase either by our pose estimation
method, or explicitly by the user.

Momentum constraints(Cm). During both unconstrained and
constrained phases we dictate the behavior of the linear
and angular momentum through constraints defined in equa-
tions 8,9,10,11.

The spacetime constraints formulation finds the unknowns Q that
minimize the objective function while satisfying all the constraints:

min
Q

åEi(q
i) subject to





Ce(Q) = 0
Cp(Q) = 0
Cm(Q) = 0

(12)

9 Results

We used our framework to generate a wide range of animations on
a male, female and child figure, all of which comprise 51 DOFs,
including 16 Euler rotations, 3 translations, and 32 quaternion ro-
tations. We also created a three-legged creature with 58 DOFs. In-
equality constraints enforce bounds on each DOF. We obtained the
body dimensions and mass distributions from the biomechanics lit-
erature [de Leva 1996; Pearsall et al. 1994]. To start the animation
process, the animator creates a simple animation as an input to the
synthesis process. In some cases the animator also selects the parts
of the body to be used for constraint detection (e.g. feet and hands).
Once motion phases have been determined, the animator can also
change the relative timing between each phase. In some cases, the
animator adjusted the learned transition poses to achieve a desired
effect. For the karate-kick animation, the animator also created an
additional pose.

We solve our optimizations using SNOPT [Gill et al. 1996], a gen-
eral nonlinearly-constrained optimization package. The optimiza-
tion times depend on the duration of the motion sequence. All of
the simple animations took only a few minutes to sketch. For all
examples, the synthesis process took less than five minutes.

Broad jump. We synthesized a broad jump motion that clearly
improves a crude input animation where only global translations
of the character (3 out of 51 DOFs) are keyframed. The original
animation is created by interpolating only 3 keyframes at takeoff,
peak, and landing. The appropriate movement on the arms and legs
results from enforcing the momentum constraints and learning the
realistic transition poses.

Twist jumps. The input motion for this sequence consists of two
jumps, each with a 90◦ turn. The output animation shows the prepa-
ration before each take-off. The character twists away from the turn
to increase the potential energy so that it can generate enough an-
gular momentum at take-off to accomplish the 90◦ turn.

Hopscotch. Much like for the broad jump example, the animator
created an animation of a popular child game, consisting of hops,
broad jumps and a spin jump. Each hop only requires 3 keyframes,
each of which has fewer than 7 DOFs specified. This example
shows that our system can deal with asymmetric motions by coordi-
nating different parts of body to accommodate the momentum con-
straints. This example also demonstrates smooth transitions among
different types of jump styles (figure 1).

Running. The input for the running motion sequence required
keyframing of 7 DOFs. Originally, the upper body is completely
stiff since no upper body DOFs were keyframed. The angular mo-
mentum constraint creates a counter-body movement by the shoul-
ders and arms to counteract the angular momentum generated by
the legs. In the synthesized animation the arms clearly twist to
counter the leg movement.

Handspring. We generated a rough sketch of an advanced hand-
spring motion on an uneven terrain (figure 7). This hazardous
movement of landing and jumping with arms would be difficult
to capture in the real world. The constraint detector successfully
finds constraints on both the feet and hands. Since there were no
handstands within the learning example database, the animator had
to substantially modify the suggested handstand transitions poses.
This example demonstrates that momentum constraints are general
enough to capture the dynamics of movement regardless the orien-
tation of the model.
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Figure 7 A handspring motion: simple and synthesized animation.

Figure 8 A high-bar gymnastic exercise: simple and synthesized animation.

Figure 9 Jumping on ice-skates: simple and synthesized animation.

Figure 10 Spin jump by a three-legged creature: simple and synthesized animation.
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High-bar. Figure 8 shows a character performing a high-bar
gymnastic exercise. The two positional constraints on the hands
during bar-contact time create a “hanging” constrained stage. The
constraints of linear momentum and angular momentum apply
equally to the bar-contact and the more common ground con-
strained stage.

Skating. This example demonstrates sliding constraint detection.
The motion is similar to the 180◦ spin jump, except that the charac-
ter slides a single leg along a straight line through the take-off phase
and landing phase. The resulting motion resembles an ice-skating
figure (figure 9).

Karate kick. The karate kick animation was created by an in-
cremental synthesis process. First the animator created a simple
side-jump animation. The first synthesis pass created a realistic
side jump. The animator then introduced an additional keyframe at
the peak of the jump indicating a leg kick. The second synthesis
pass created the final karate-kick animation by enforcing the origi-
nal constraints augmented by the additional mid-flight constraint.

Other humanoid characters. Our framework can also animate
characters with different skeletal structures and mass distributions.
We created a child character whose limbs are shorter and whose
torso is relatively larger. Our algorithm successfully scaled down
the poses learned from motion database to accommodate a differ-
ent skeletal structure. In another example, we removed the left knee
DOF of the character and generated a motion sequence of the twist
jumps. The character had to drastically twist the pelvis while land-
ing to place the stiff leg on the ground properly.

Non-humanoid characters. Our method also generalizes to
non-humanoid characters. We created a strange three-legged crea-
ture and synthesized a number of animations experimenting with
various locomotion gaits. In figure 10 we show the creature jump-
ing to the side and doing a 180◦ turn jump.

10 Conclusion and future work

In this paper we present a general method for rapid prototyping of
dynamic character motion that could be used by both experts and
non-skilled animators. Animators can use our system to produce
relatively complex realistic motion with little effort on behalf of
the animator. Creating the initial simple animation often takes less
than two minutes, while modification of the transition poses can
be avoided completely by accepting suggestions presented by the
learned-pose estimator. In addition, a skilled animator can fine-tune
transition poses as well as add any number of additional keyframes
to achieve desired details.

We show that realism can be approximated by a small number of
constraints on the behavior of linear and angular momentum. This
approach helps us avoid the complexities of Newtonian constraints.
Since we don’t solve for muscle forces, we also avoid computing
the right distribution of muscle usage needed to produce natural-
looking motion. Simpler dynamic constraints allow us to generate
more complex animations in terms of the character model and mo-
tion description complexity. Simpler constraints also allow greater
variability of the resulting motion. This feature enables the anima-
tor to add more expressive detail to the motion by providing addi-
tional keyframes.

We also show that by learning a small set of key parameters that
describe a pose, we can create realistic transition poses. We show
that the sample space can be populated either by realistic motion

(e.g. motion capture data), or by storing each of the previously cre-
ated poses. In both cases, a very small data set creates useful pose
suggestions.

Our methods are best suited for synthesis of highly dynamic
motion, since such motions are mainly governed by Newtonian
physics. One clear future research direction would be to extend
these methods so that they apply to low-energy character motion
such as walking, reaching, or picking up an object.

Many aspects of our approach could be potentially applied to other
animation problems, most notably realistic editing of motion cap-
ture data. The animator could start from a motion capture sequence
instead of a simple animation. The automatic constraint detection
methods could be useful in processing motion capture data, since
they can accurately find the foot-ground contact points. Trans-
forming a motion capture sequence by adding additional keyframes
would create a new realistic animation keeping as much of the cap-
tured detail as possible.

It is worth noting that our synthesis approach does not funda-
mentally need to start with an input animation. A skilled anima-
tor could, alternatively, specify the environment constraints and
keyframes explicitly. This is probably the most likely approach for
using our algorithms in the production environment. To make our
methods more accessible to a wider audience, we need to develop
a more effective user interface. In the future, we hope to make our
tools accessible to animators of varying skill levels.
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Appendix A

We compute the angular momentum of a body point x as

L = mr× ẋ, (13)

where r is the vector between x and COM, ẋ is the velocity of x and
m is the mass of x.

To compute the net angular momentum of the whole body, we sum
the angular momentum contributions for each body part (node) i,
computed by integrating each body point x j:

L = å
i

∫ ∫ ∫

j
m j(x j −C)× (ẋ j −Ċ)dxdydz

= å
i

cr(WiMiẆ
T
i )+å

i
miC×WiCi

+å
i

miWiCi ×Ċ +å
i

miC×Ċ (14)

where Ci is the COM of the node i in its local coordinate frame.

We define operator cr() that transforms a 3×3 matrix A to a 3×1
vector as follows:

cr(A) =




a23 −a32
a31 −a13
a12 −a21




415



We compute the mass matrix tensor Mi of the node i as an integral
of outer products over all body points x j , scaled by the node mass
mi.

Mi = mi

∫ ∫ ∫

j
x jx

T
j dxdydz
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2000. Interactive manipulation of rigid body simulations. Proceedings of SIG-
GRAPH 2000 (July), 209–218. ISBN 1-58113-208-5.

RAIBERT, M. H., AND HODGINS, J. K. 1991. Animation of dynamic legged loco-
motion. In Computer Graphics (SIGGRAPH 91 Proceedings), vol. 25, 349–358.

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN, M. 1996. Efficient gen-
eration of motion transitions using spacetime constraints. In Computer Graphics
(SIGGRAPH 96 Proceedings), 147–154.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs and adverbs: Mul-
tidimensional motion interpolation. IEEE Computer Graphics & Applications 18,
5 (Sept. – Oct.).

SHIN, H. J., LEE, J., GLEICHER, M., AND SHIN, S. Y. 2001. Computer puppetry:
An importance-based approach. ACM Transactions on Graphics 20, 2 (April), 67–
94. ISSN 0730-0301.

TAK, S., SONG, O.-Y., AND KO, H.-S. 2000. Motion balance filtering. In Proceed-
ings of the 21th European Conference on Computer Graphics (Eurographics-00),
Blackwell Publishers, Cambridge, S. Coquillart and J. Duke, David, Eds., vol. 19,
3 of Computer Graphics Forum, 437–446.

TORKOS, N., AND VAN DE PANNE, M. 1998. Footprint-based quadruped motion
synthesis. In Graphics Interface ’98, 151–160. ISBN 0-9695338-6-1.

VAN DE PANNE, M., AND FIUME, E. 1993. Sensor-actuator networks. In Computer
Graphics (SIGGRAPH 93 Proceedings), vol. 27, 335–342.

VAN DE PANNE, M., AND FIUME, E. 1994. Virtual wind-up toys. In Proceedings of
Graphics Interface 94.

VAN DE PANNE, M., KIM, R., AND FIUME, E. 1994. Virtual wind-up toys for ani-
mation. Graphics Interface ’94 (May), 208–215. Held in Banff, Alberta, Canada.

VAN DE PANNE, M. 1997. From footprints to animation. Computer Graphics Forum
16, 4, 211–224.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In Computer Graphics
(SIGGRAPH 88 Proceedings), vol. 22, 159–168.
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